关于我们 / About
新闻动态 / News
最新动态
睿达科技自创立之日起就坚持自主研发,自主创新。我们专注在激光切割系统的开发和应用,经过多年的技术和经验积累,已经创造和实施了诸多的成功控制系统解决方案,并得以在客户中得到推广和应用。当设备制造商需要一个高速,高可靠性以及高效灵活的激光加工控制系统时,睿达科技将在专业的高质量切割领域以及自动化方面为您提供一个高性价比的实施方案。在激光切割系统应用中,睿达科技可以从每个环节和细节提供系统级的咨询和服务,为客户节省成本和选型的时间以及调试的时间,也使用户的售后服务得以简化。睿达科技切割系统家族产品涵盖了从脱机产品到联机的系列产品。产品高度兼容高压激励CO2激光器、射频激励CO2激光器、光纤激光器以及紫外激光器系列。从低功率非金属激光切割系统、中功率金属非金属激光切割系统以及高功率光纤激光切割控制系统都可以提供完整的解决方案。产品应用覆盖普通切割和精密切割领域。睿达科技的激光切割系统产品都基于工业级的TI系列浮点DSP处理器和高密度的FPGA技术,可脱机运行的硬件架构保证了系统长时间工作的稳定性。柔性的加减速技术和前瞻控制技术保证了整个控制系统的快速性和平稳性。产品功能可以完成平面切割、平面雕刻,旋转切割,旋转雕刻功能。自主研发的针对金属或者非金属材料的自动调高控制器扩展了普通二维切割应用的广度,使得切割非平面的材料成为可能。另外,作为整个控制系统的补充,睿达科技还提供无线WIFI,无线操作手柄等辅助设备,以改善用户操作的性能。 机器视觉在睿达科技产品发展中占有越来越重要的地位。我们还将更加深入融合视觉技术在运动控制的深度应用。目前,我们已经具有了基于图形模板匹配技术的视觉定位系统以及基于mark点的视觉定位系统。另外我们还又拥有自动轮廓识别和变形匹配技术以适应更加复杂的现场应用。我们已经将视觉技术和激光切割应用紧密结合,派生了诸多的视觉切割控制系统。视觉技术和焊接应用结...
基于振镜控制的激光运动控制系统在激光打标、激光振镜切割、激光焊接、激光熔覆、激光清洗等方面都获得了广泛应用。睿达科技已经在激光振镜控制方面拥有多年技术积累,而且在平台技术方面除了振镜控制,激光控制,还集成了多轴旋转电机的运动控制。我们不仅仅致力于单机打标控制系统的研发和应用,同时也致力于整个激光标刻自动化方面的研究和应用,使得单一的激光标刻设备可以集成到整个工厂自动化的控制体系当中。目前睿达科技的打标产品线涵盖了普通二维打标,飞行打标,阵列打标和拼接打标以及视觉打标等产品。激光标刻产品拥有丰富的硬件资源和软件资源,因此睿达科技的激光标刻产品可以完成多样化,复杂和柔性的激光加工功能,为激光振镜,电机运动复合加工中心提供了硬件基础。另外其高兼容性的设备接口标准可以非常容易的集成到外部的系统当中。基于工业4.0架构开发的实时信息交互系统提供了和外部工厂自动化以及基础云平台进行信息交互的通用接口,可以方便的和MES系统以及ERP系统对接。我们提供非常全面的产品解决方案,因此无论你是想选用标准的产品构建设备还是要采用定制化的模块构建机器,我们都能满足您的定制需求。我们将对用户使用我们产品进行集成的全过程进行服务,直到产品投入应用。我们的打标产品线兼容不同能级的激光器和不同波长的激光器,这也就是说明你可以找到适合于打标的控制系统。我们提供创新的,易用的,高性价比的行业解决方案和高效的打标产品。高质量标准和可靠性是睿达科技的信誉所在。应用领域电子元器件,五金制品,精密器械,礼品饰品,玻璃水晶,广告装饰,玩具,电子电器,服装皮革,医药包装,食品包装,芯片制造和电子加工产品功能1.双核控制 ,双向数据处理,速度快,效率高。2.板载校正,速度快,精度高。3.板载加密,安全可靠。4.振镜16位控制精度,可实现微米级打标精度。5.严格的激光和振镜同步控制,扫描一致性高。6.支持4轴联动控制,可实现...
产品展示 / Products
新品推荐
该产品是RDV6442G-M,RDV6445GZ-M,RDV6445G-M 系列产品中的一个组件,包含了相机,镜头,以及光源,为一个集成一体化的组件。具有质量轻,集成度高的特点。
RDC6585G系统是睿达科技开发的新一代激光雕刻/切割控制系统,该控制系统具有更好的硬件稳定性,具有更好的抗高压、抗静电干扰的特性。基于5英寸彩屏的人机操作系统具有更友好的操作界面及更强大的功能。该控制器包括更完善更优秀的运动控制功能,包括激光切割和扫描加工;具有兼容性更强的6路独立可调的激光电源控制接口,且扩展预留了多路通用/专用IO控制接口,以及多个外设互联接口。该控制器可用于驱动单/多皮带型的2/4/6头电动多头互移机型,最多可支持8个运动轴,6个激光通道。应用领域:适用于大批量的激光切割/雕刻加工行业的电动多头互移控制机型上;适用于需多路激光独立控制的机型上;适用于需要较多输入输出点数的激光雕刻机上;适用于需要较多运动轴数的激光雕刻机上;适用于XY联合运动+定制型辅助轴控制机型上。功能描述:1. 支持单皮带型/多皮带型的2/4/6头电动互移控制;2. 支持最多到8路电机输出,6路相互独立可调的数字/模拟激光输出;3. 支持最多2路扩展串口,可以和EPLC-400,无线手持设备(BWK201R,BWK301R),激光电源等具有RS232标准接口的设备进行通信;4. 支持最多10路OC门(500mA电流)输出,可直接驱动5V/24继电器,控制器内置2路图层联动输出,蜂鸣器+三色灯控制输出;5. 支持手机APP;6. 支持同时对接普通切割和旋转切割,无需外置切换电路,旋转切割在C轴电机接口(6头互移控制除外);7. 支持自动对焦,对焦轴在D轴电机接口(6头互移控制除外);8. 方便定制某些额外的辅助运动控制。
人力资源 / Case
最新案例
别样的普吉之旅 北纬7度,一个拥有信仰和深受阳光眷宠的国度,对这个国度倾注最初的爱源于小学课本里的曼谷大象,从来未曾想过多年之后,我能有幸亲吻这片拥有神秘面纱的神奇国土,也许缘分就是如此妙不可言吧,不经意间结识到的某个瞬间,某种邂逅,在未来的某天就这样成真了! 旅行的意义,对现如今的我而言,倘若谈不上是一种远离,那也是心灵的某种回归,在美景中回归最本真的自己和最纯粹的美好,感谢我的团队,让我有机会在异国他乡静看人潮,与自己相遇! 五一节,趁着这样的岁月静好,趁着别样的花样年华,我第一次踏出了国门,徜徉在普吉这个浪漫海岛的热情四溢里,普吉的一束阳光,一把海风,就能轻易美到心醉,触动到心底,普吉老镇,小街道,独特的短房屋,慢节奏的生活,处处充盈着佛教文化,在这里你可以不急不躁,看静谧的海,品尝各式酸辣可口的美食以及甜到爆的热带水果,当然也无需担心语言障碍,因为连街边小摊卖啤酒和炸鸡的大妈都会用中文交流,时不时还会向你绽放温和的笑容!   普吉,这个漂流在海上的小岛,的确是来了就让人不曾想离开,这里你不管走到哪,都是唯美如画的,旅行第一天,拥有纯正泰国血液,中文却超级流利的导游P海带领我们骑大象,坐牛车,享受鱼疗,体验了不一样的泰国南部风土原貌及郊外风情,晚上,观看了国际范的泰国人妖表演,那一刻,我只为艺术而停留,绚丽的舞台,多样的背景变幻,精致的服装,高挑的人妖们美得是那样的无懈可击,在秀场里他们演绎了不同国家的风情,期间浸润着的中文歌曲桥段让我恍然以为回到了故土,人妖的美是那种远观的美,倘若你近焉拍照,你会觉得欢乐的背后是他们不为人知的艰辛和汗水。  旅行第二天,一大早,我们就来到了普吉香火鼎盛的海龙寺,虔诚的拜了传说中极为灵验的四面佛,拜完后在菩提树下摸头三下,预示从此好运相伴。平日里,常常会忽略心灵最初的自己,在这里,我在菩提树下诠...
人力资源 / Job
联系我们 / Contact
服务中心 / Service
下载中心 / Download
每一步都是创造
 Thinking in motion
 以激光加工领域为基础,为设备制造商提供完整的行业解决方案

激光是如何被研制出来的?

日期: 2018-05-08
浏览次数: 30

2002年4月7日,中国“神光二号”巨型激光器研制成功。你可知道,激光束如何被研制出来的呢?

激光是如何被研制出来的?

激光是20世纪人类值得骄傲的重大发明之一,它是迄今性能最为优越的光源。自从20世纪60年代初激光被发明以来,迅速被应用于工业、军事、通信、医学、科研等各领域,给传统工业和经典技术以巨大冲击,产生大批高新工业和新的学科,影响了人类生活的方方面面。

激光是理论先于实践的典型代表。早在1916年,爱因斯坦在研究光和物质的相互作用时,就奠定了激光的理论基础。他提出激光的产生与原子的结构有关。在原子内部,存在原子核和核外电子,电子离原子核的距离越远,所具有的能量越高,这时我们称电子处于较高的能级。处于较高能级的电子可以自动“跳跃”到较低的能级,同时释放出特定频率的光子(光子的能量等于两个能级的能量差),称为自发辐射。如果有光子照射进原子,当光子能量正好等于电子高低能级的能量差时,处于高能级的电子将在入射光子影响下向低能级跃迁,同时发出一个与入射光子频率相同的光子出来,称为受激辐射。

自发辐射是随机过程,处于高能级的原子发射光子的时间是随机的,发出的光的相位、偏振、传播方向等参数是随机的,光子之间没有确定的联系,这正是大多数自然光源所处的状态。而受激辐射发出的光子的物理参数都与外来的光子相同,是近乎完美的光。我们可以这样类比,当外国侵略者入侵时,自发起来反抗入侵的游击队的武器、服装、人员组成都是杂乱无章的;而政府为应对入侵而正式征集的军队,其武器、服装和人员组成都非常统一。

虽然理论上预言了可以有受激辐射这样近乎完美的光,如何实现它却困扰了物理学家40多年,有人甚至一度认为这是不可能的。为什么会这样呢?

当光射入物质时,原子中处于低能级的电子会吸收光子,叫作受激吸收。在正常情况下,处于较高能级的电子数量远少于处于较低能级的电子数量,原子处于这样的状态才比较稳定。因此受激吸收总是强于受激辐射,从自然状态来看,光是被吸收的。要产生较强的受激辐射,必须想办法让处于高能级的电子多于处于低能级的电子,叫作粒子数反转。可如何才能实现它,大家都一筹莫展。

直到1951年,苦思多年的美国物理学家汤斯一天早晨等候买早餐时,才突然认识到,用热或电的方法,把能量泵入氨分子中,可以让它们处于激发状态,就可以用微波诱导它们发射出很强的“受激微波”,他立刻把这个想法记录在一个用过的信封背面。回到实验室,他把氨分子放在谐振腔内,利用振荡和反馈放大产生出来的受激辐射,于两年后成功实现了“受激辐射微波放大”(简称为微波激射)。几年之后,光学波段的受激辐射光源也被研制出来了。

同样,在光学波段,物理学家使用了其他物质来实现粒子数反转,比如氦—氖气体、二氧化碳气体、红宝石等。在这些物质中,通常存在三个或四个能级,包括一个基态和多个激发态,其中一个激发态很稳定,电子等粒子在这个能级上能停留较长时间,叫亚稳态。其他能级更高的激发态不稳定,粒子只能停留很短时间。在外界电源或者光源激励下,处于基态的粒子被抽运到较高的能级中,短暂停留后,粒子转移到亚稳态上,在这个能级上逐渐积累了大量粒子,比基态的粒子数还多,从而实现了粒子数反转。

如果现在有光子进入,当光子的频率为特定值时,它能引起亚稳态的大量粒子同时向基态跃迁,产生大量频率、相位、偏振态相同的光子,这就是受激辐射。

仅仅实现粒子数反转,还不足以制造出激光器。因为激光器的工作物质内原子自发辐射的初始光信号是杂乱无章的,在这些光信号的激励下得到的放大的受激辐射同样是随机的。为了得到方向单一、单色性很好的受激辐射,必须在工作物质两端放置相互平行的反射面,形成光学谐振腔。光线在两镜间来回反射,其中方向与镜面不垂直的光线逐渐被反射出去,只留下垂直于镜面的受激辐射光,这就是激光光束方向性很好的原因。光在谐振腔内来回反射过程中,工作介质使光线增强,从而形成强度很高的激光。

美国科学家梅曼利用改进的干涉谐振腔,采用红宝石作为工作物质,利用高强闪光灯光管来激发红宝石,于1960年5月获得了波长为694.3纳米的激光,此时距离爱因斯坦提出激光理论已经40多年了。

(来源:科普中国)

关闭窗口】【打印
分享到:
Copyright ©2005 - 2013 深圳市睿达科技有限公司
犀牛云提供企业云服务